TISSUE PATHOMORPHOLOGY AND IMMUNOHISTOCHEMISTRY IN MINK (NEOVISON VISON) FED BLOOD PLASMA SUPPLEMENTED DIET IN THE PERIOD OF PREPARATION FOR BREEDING

BOŻENA NOWAKOWICZ-DĘBEK, ANNA ŚMIECH¹, ANDRZEJ ZOŃ², HANNA BIS-WENCEL, OLGA Ondrasovicova³, ŁUKASZ WLAZŁO, AND WIOLETTA WNUK

Department of Animal and Environmental Hygiene, ¹Department of Pathology, University of Life Sciences in Lublin, 20-950 Lublin, Poland
bozena.nowakowicz@up.lublin.pl
2 National Research Institute of Animal Production, 39-331 Chorzelów, Poland
3Department of Environmental Protection, UVM, 041 81 Košice, Slovak Republic.

Received: March 13, 2012 Accepted: August 30, 2012

Abstract

The research carried out at a mink farm aimed to determine the effect of blood plasma supplemented diet applied at the period preparing mink for reproduction on the animal organism. The studies included four groups of mink. The control group received a non-supplemented diet, while the experimental groups had feed with additive of 0.5%, 1.5%, and 2.5% of beef-pork plasma in the daily feed ration. The pathomorphological and immunohistochemical evaluation was performed on the liver, kidneys, lymph nodes, spleen, and bowel from all the groups. Pathomorphological and immunohistochemical changes of various intensity were observed in the examined organs from all experimental groups.

Key words: mink, blood plasma supplemented diet, internal organs, pathomorphology, immunohistochemistry.

New nutritional strategies for mink aim, among others, to increase an energy level in feed rations through an increased content of energy from fat. It is expected to improve reproduction performance and ensure high quality skins. However, such feeding may cause metabolic disorders at the cellular level, often imperceptible during a short production cycle of the species. The period of mink preparation for breeding is the time when animal is getting adapted to higher burden of the organism. At that time, mink needs a feed ration of low-caloricty and high-protein content, as well as appropriate hygiene and sanitary conditions. Some authors, however, recommend restrictive feeding routines at the preparatory period so as to ensure good body condition and welfare of animals (3, 4, 6, 13). These problems have been widely addressed but they still lack good solutions. Recently, blood plasma has been frequently incorporated into diet of many animal species, and its high nutritional value as a feed supplement was confirmed (7, 8, 9, 11, 14, 17). So far, blood plasma has not been used in carnivorous fur animal feeding, therefore, the present study was conducted to determine the effect of supplemental dietary plasma on mink organism during the preparatory period for the breeding.

Material and Methods

The study was performed on 120 pastel mink (Neovison vison) being at the preparatory period for the breeding. The animals were divided into four equal groups. The experimental group D1 received 0.5% of beef-pork plasma dietary additive to a daily feed ration, group D2 – 1.5% additive, group D3 – 2.5% additive, and the control group C was fed a non-supplemented feed. Nutritional value of a feed ration was tailored to the investigated period and satisfied the nutritional requirements (1). Throughout the study period, the animals were maintained under supervision of veterinary and animal husbandry staff and were provided with suitable prophylactic treatments. Animal feed ration included 60% of cod-fillet offals, 5% of mackerel heads, 20% of poultry bowels, 5% of poultry heads and paws, 1% of blood meal, 5% of extruded wheat, 1% of wheat bran, and 3% of water. The EM level (51.8% of protein, 37.1% of fat, 11.1% of carbohydrates) reached 1,110
kcal/feed kg. The basic components of blood plasma were protein (min. 70%), fat (max. 2.0%), fiber (max. 0.3%), and ash (max. 14.0%). The plasma supplementation started on 5th d before mating. The animals were slaughtered after the preparation period according to the consent provided by the Local Ethics Committee. The males after the post-mating period were slaughtered and sections of the liver, kidneys, lymph nodes, spleen, and bowel were collected from all animals of the studied groups for histopathological, histochemical, and immunohistochemical examinations. The tissue material was fixed in 10% neutral buffered formalin for paraffin block preparation, then sectioned and stained with haematoxylin and eosin. The histochemical examinations for neutral fats were performed in the liver and kidneys using Daddi`s Sudan histochemical examinations for neutral fats were performed in the liver and kidneys using Daddi`s Sudan IV staining visualised the presence of orange -hued vacuoles localised in the peripheral zone of the lobule but in the central area as well. Many massive inflammatory infiltrates were also noted around the blood vessels and between the hepatic lobules. The intense inflammatory infiltrates extending into the mucosal, often surrounding the intestinal crypts, were also seen in the fragments of the intestines of mink from group D2. The immunohistochemical examination indicated substantial dominance of T lymphocytes (76%), whereas B lymphocytes were found primarily in the surface layer of the mucus and constituted 20% (Fig. 5).

The analyses of the histological sections from group D3 samples revealed the histopathological changes of intensity comparable to that observed in group D1. There were visible fat vacuoles in renal tubules and hepatocytes from the peripheral lobular zone as well as focal inflammatory infiltrates in the kidneys and liver. Intestinal mucus also displayed inflammatory infiltrates consisting predominantly of T lymphocytes (55%) and B lymphocytes (17%). Besides, abundant haemorrhages were observed in the renal cortex.
Fig. 1. Group C. 1 - expression of CD79α antigen labelling B lymphocytes in intestinal mucus, IHC stain, approx. 100x; 2 - reaction to the presence of Sudan-stained bodies in kidney epithelial cells, Sudan IV stain, approx. 100x; 3 - kidney, H.E., approx. 100x; 4 - lymph node, H.E., approx. 50x.

Fig. 2. Group D1. expression of antigen 1-CD3 identifying T lymphocytes in lymph nodes, IHC stain, approx. 100x; 2 – CD79α identifying B lymphocytes in lymph nodes, IHC stain, approx. 100x; 3 – CD79α identifying B lymphocytes in lymph nodes, IHC stain, approx. 100x; 4 – CD3 identifying T lymphocytes in intestinal mucus, IHC stain approx. 100x.

Fig. 3. Group D1. 1 – expression of CD79α antigen identifying B lymphocytes in intestinal mucus, IHC stain, approx. 200x; 2 – reaction to the presence of Sudan-stained bodies in kidney epithelial cells, Sudan IV stain, approx. 100x; 3 – reactive lymph node, H.E., approx. 100x; 4 – fine inflammatory infiltrates in the liver, H.E., approx. 100x.

Fig. 4. Group D1. 1 – Congestion of the spleen, H.E., approx. 100x; 2 – congestion of the liver, H.E., approx. 200x.

Fig. 5. Group D2. 1 – massive inflammatory infiltrates in the kidney, H.E., approx. 100x; 2 – inflammatory infiltrate surrounding intestinal crypts, H.E., approx. 200x; 3 – enhanced expression of CD4 antigen identifying T lymphocytes in intestinal mucus, IHC stain, approx. 200x; 4 – reaction to the presence of Sudan-stained bodies in hepatocytes, Sudan IV stain, approx. 100x.

Fig. 6. Group D2. 1 – defensin expression in intestinal crypts and inflammatory cells, IHC stain, approx. 100x; 2 – defensin expression in intestinal crypts; IHC stain, 200x.

The immunohistochemical examination showed positive reaction to the presence of defensins in all groups. The reaction intensity differed between the groups. The most intensive reaction was observed in group D2 (Fig. 6). Pronounced expression of defensins was detected in the intestinal epithelium, intestinal
cytokeratin and inflammatory cells. The reaction was
granular and restricted mainly to the cell cytoplasm. In
group D1 and D3, the expression was less intensive, yet
noticeable in the same structures as in group D2.

Discussion

Blood plasma products are used in nutrition of a
number of animal species because they are rich in
specific proteins. The plasma proteins include ca 50% of
albumin fraction, 25% of globulins, 5% of fibrinogen,
and 20% of other proteins or peptides, including
haptoglobin, transferrin, growth factors. The plasma
products incorporated into pig diet was found to
improve animal performance. In some cases in poultry,
however, the preparations decreased bird body weight
(7, 8, 11, 14). A histological analysis of the jejunal wall
structure in poultry fed a diet supplemented with blood
plasma, performed by Jamroz (7), demonstrated that all
groups of birds had a normally functioning intestinal
wall, which is contrary to the results obtained in the
present study. Likewise, other authors (8, 9, 11, 17) did
not note any differences in the mucus structure, height
of intestinal villi, depth of crypts, or cell proliferation.
The research conducted on mink showed inconsiderable
histopathological changes in animals fed plasma
additive as compared to the control mink with a regular
diet characteristic for carnivorous fur animals (2, 12).

The immunological system of animals is able to
inhibit excessive activation of immune response before
tissues get injured. However, in numerous cases it shows
tolerance to antigens. Immune reaction mounting is
controlled by the highly completed system via both,
direct cell to cell contact and cytokines regulating the
response. The maintenance of immunological tolerance
requires involvement of large number of immune cells
(5). The peripheral lymphoid organs are sites where
mature B and T lymphocytes are exposed to foreign
antigens and initiate the adaptive immune reaction. The
immunohistochemical analyses indicated the dominance
of T lymphocytes, while B lymphocytes were commonly
identified in the surface layer of the mucous membrane.
The present infiltrates had no destructive potential but
were organised similarly to the peripheral lymphoid
tissue. Lymphocytes circulating in the blood stream and
lymphatic system encounter the antigens they remember
distinguish subpopulations of these cells as well.
The most important antigens include: CD3 (characteristic of T lymphocyte), CD79a (characteristic of B lymphocyte), CD4 and CD8 (subpopulations of T lymphocytes – helpers and suppressors, respectively), and CD34 (typical of blastic cells). Estimation of the percentage and absolute number of T lymphocytes
(CD3) proves to be very important in quantitative
evaluation of cell-mediated response, while application
of antibody CD79a to label B cells enables to identify
the mature and immature forms of B lymphocytes.
Importantly, these antigens are of high value in
histopathologic diagnosis of neoplasms (5, 15).

Defensins are recognised as potent peptides
with antimicrobial properties as well as regulators of the
immune system activity. They play a prominent role in
innate and adaptive immunity being able to mediate
acute inflammatory response. Intestinal defensins
secreted by Paneth cells in the small intestines are
extremely useful in preventing inflammatory conditions,
which was confirmed in the experimental studies on
mice (10, 18). This indicates their role in the activation
of the immune system, as it was observed in mink fed a
blood plasma supplemented diet. Valdovska and
Pilmane (16) highlighted a strict correlation between a
systemic cellular inflammation level and the intensity of
defensin expression in mink liver that profoundly
evidences defensin-stimulated cell proliferation as the
compensation mechanism. The researches have
confirmed the enhancement of the immune response.
However, intensification or blockage of the functional
capacity of lymphocytes and obtaining a balance
between mediators of immune activation and immune
suppression for optimal host defence are the essential
elements of immunotherapy. Appropriate handling of
these elements is critical because it can cause or trigger
the irregularity of the immune system.

References

animals. IFiZZ PAN, Jabłonna, 1994.
2. Bis-Wencel H., Lopuszyński W., Saba L., Bryl M.,
Rowicka A.: Histopathological examination of selected
internal organs of pastel minks in relation to oxidative
state parameters. Bull Vet Inst Pulawy 2010, 54, 651-
654.
3. Bis-Wencel H., Zoń A., Saba L., Ondrasovic O.: Mink
production indices in various types of feeding
conditions. Ann Univ Mariae Curie-Sklodowska [EE]
2006, 52, 383-386.
4. Damgaarda B.M., Hansen S.W., Børsting C.F., Møller
S.H.: Effects of different feeding strategies during the
winter period on behaviour and performance in mink
females (Mustela vison). Appl Anim Behav Sci 2004, 89,
163–180.
5. Grygorowicz M.A., Kozłowska E.: Involvement of
receptors recognizing pathogen-associated molecular
patterns – TLRs in modulation of regulatory T cell
CD4+CD25+FoxP3+ activity. Post Mikrobiol 2011, 50,
141–154.
6. Gugołek A., Lorek M.O., Rotkiewicz Z., Janiszewski P.,
Wyczling T.: Microbiological status of complete free-
flowing mixture and its impact on the reproduction of
polar foxes. Roczniki Nauk PTZ 2007, 4, 237-244.
7. Jamroz D., Wilczkiewicz A., Orda J., Kuryszko J.,
Stefaniak T.: Use of spray-dried porcine blood by-
products in diets for young chickens. J Anim Physiol
Anim Nutr 2011, DOI: 10.1111/j.1439-
0396.2011.01149.x
8. Jiang R., Chang X., Stoll S., Fan M.Z., Argthington J.,
Weaver E., Campbell J., Burin D.G.: Dietary plasma
protein reduced small intestinal growth and lamina
propria cell density in early weaned pigs. J Nutr 2000,
130, 21–26.
comparison of the effects of dietary spray dried bovine

436
